

LMV431/LMV431A/LMV431B Low-Voltage (1.24V) Adjustable Precision Shunt Regulators

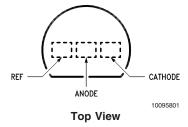
General Description

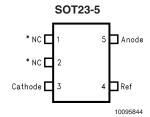
The LMV431, LMV431A and LMV431B are precision 1.24V shunt regulators capable of adjustment to 30V. Negative feedback from the cathode to the adjust pin controls the cathode voltage, much like a non-inverting op amp configuration (Refer to Symbol and Functional diagrams). A two resistor voltage divider terminated at the adjust pin controls the gain of a 1.24V band-gap reference. Shorting the cathode to the adjust pin (voltage follower) provides a cathode voltage of a 1.24V.

The LMV431, LMV431A and LMV431B have respective initial tolerances of 1.5%, 1% and 0.5%, and functionally lends themselves to several applications that require zener diode type performance at low voltages. Applications include a 3V to 2.7V low drop-out regulator, an error amplifier in a 3V off-line switching regulator and even as a voltage detector. These parts are typically stable with capacitive loads greater than 10nF and less than 50pF.

The LMV431, LMV431A and LMV431B provide performance at a competitive price.

Features

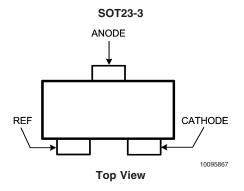

- Low Voltage Operation/Wide Adjust Range (1.24V/30V)
- 0.5% Initial Tolerance (LMV431B)
- Temperature Compensated for Industrial Temperature Range (39 PPM°C for the LMV431AI)
- Low Operation Current (55µA)
- Low Output Impedance (0.25Ω)
- Fast Turn-On Response
- Low Cost

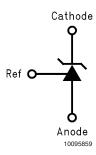

Applications

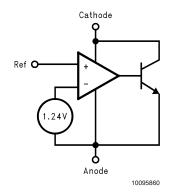
- Shunt Regulator
- Series Regulator
- Current Source or Sink
- Voltage Monitor
- Error Amplifier
- 3V Off-Line Switching Regulator
- Low Dropout N-Channel Series Regulator

Connection Diagrams

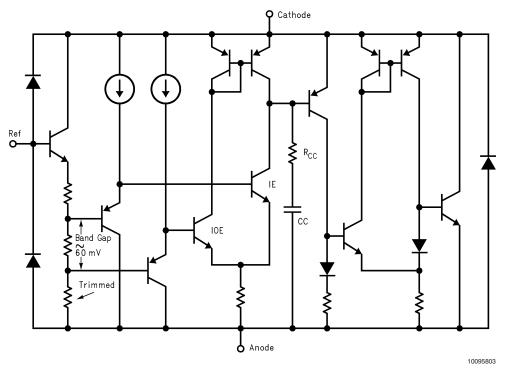
TO92: Plastic Package



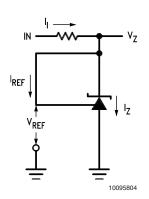

^{*}Pin 1 is not internally connected.

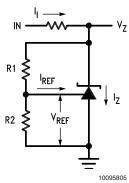

*Pin 2 is internally connected to Anode pin. Pin 2 should be either floating or connected to Anode pin.

Top View



Symbol and Functional Diagrams


Simplified Schematic



Ordering Information

Package	Temperature	Voltage Tolerance	Part Number	Package Marking	NSC Drawing
	Range				
	Industrial Range	1%	LMV431AIZ	LMV431AIZ	
	-40°C to +85°C	1.5%	LMV431IZ	LMV431IZ	
TO92	Commercial Dange	0.5%	LMV431BCZ	LMV431BCZ	Z03A
	Commerial Range 0°C to +70°C	1%	LMV431ACZ	LMV431ACZ	
	0 0 10 +70 0	1.5%	LMV431CZ	LMV431CZ	
		1%	LMV431AIM5	N08A	
	Industrial Range -40°C to +85°C	1%	LMV431AIM5X	N08A	
		1.5%	LMV431IM5	N08B	
		1.5%	LMV431IM5X	N08B	
COTOO F		0.5%	LMV431BCM5	N09C	MF05A
30123-3		0.5%	LMV431BCM5X	N09C	IVIFUSA
	Commercial Range	1%	LMV431ACM5	N09A	
	0°C to +70°C	1%	LMV431ACM5X	N09A	
		1.5%	LMV431CM5	N09B	
		1.5%	LMV431CM5X	N09B	
		0.5%	LMV431BIMF	RLB	
SOTO2 2	Industrial Range -40° to +85°C	0.5%	LMV431BIMFX	NLD	MF03A
30123-3		1%	LMV431AIMF	RLA	IVIFUSA
		1%	LMV431AIMFX	nLA	

DC/AC Test Circuits for Table and Curves

Note: $V_Z = V_{REF} (1 + R1/R2) + I_{REF} R1$

FIGURE 2. Test Circuit for $V_Z > V_{REF}$

FIGURE 1. Test Circuit for $V_Z = V_{REF}$

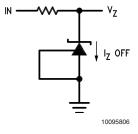


FIGURE 3. Test Circuit for Off-State Current

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

-65°C to +150°C Storage Temperature Range

Operating Temperature Range

Industrial (LMV431AI, LMV431I) -40°C to +85°C Commercial (LMV431AC, 0°C to +70°C

LMV431C, LMV431BC)

Lead Temperature

TO92 Package/SOT23 -5,-3 Package

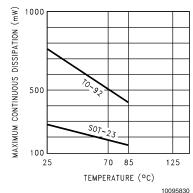
(Soldering, 10 sec.) 265°C

Internal Power Dissipation (Note 2) 0.78W

TO92

SOT23-5, -3 Package 0.28W 35V Cathode Voltage Continuous Cathode Current -30 mA to +30mA

Reference Input Current range -.05mA to 3mA Cathode Current 0.1 mA to 15mA


Temperature range

LMV431AI $-40^{\circ}C \le T_A \le 85^{\circ}C$

Thermal Resistance (θ_{JA}) (Note 3)

SOT23-5, -3 Package 455 °C/W 161 °C/W TO-92 Package

Derating Curve (Slope = $-1/\theta_{JA}$)

Operating Conditions

Cathode Voltage V_{REF} to 30V

LMV431C Electrical Characteristics

T_A = 25°C unless otherwise specified

Symbol	Parameter	Condition	ns	Min	Тур	Max	Units
V _{REF}	Reference Voltage	$V_Z = V_{REF}, I_Z = 10mA$	T _A = 25°C	1.222	1.24	1.258	
		(See Figure 1)	T _A = Full Range	1.21		1.27	V
V _{DEV}	Deviation of Reference Input Voltage	$V_Z = V_{REF}, I_Z = 10mA,$		•	4	12	mV
	Over Temperature (Note 4)	T _A = Full Range (See Figu	ure 1)				
ΔV_{REF}	Ratio of the Change in Reference	I _Z = 10mA (see Figure 2)	-1.5	-2.7	mV/V		
ΔV_Z	Voltage to the Change in Cathode	V _Z from V _{REF} to 6V					
	Voltage	$R_1 = 10k, R_2 = \infty \text{ and } 2.6k$					
I_{REF}	Reference Input Current	$R_1 = 10k\Omega, R_2 = \infty$				0.5	μΑ
		I _I = 10mA (see Figure 2)					
∝I _{REF}	Deviation of Reference Input Current	$R_1 = 10k\Omega, R_2 = \infty,$			0.05	0.3	μΑ
	over Temperature	$I_I = 10$ mA, $T_A = Full Range$	ge <i>(see Figure 2</i>)		0.03	0.5	μΑ
I _{Z(MIN)}	Minimum Cathode Current for	$V_Z = V_{REF}$ (see Figure 1)			55	80	μA
	Regulation						
I _{Z(OFF)}	Off-State Current	V _Z =6V, V _{REF} = 0V (see Figure 3)			0.001	0.1	μA
r _Z	Dynamic Output Impedance (Note 5)	$V_Z = V_{REF}$, $I_Z = 0.1 mA$ to	15mA				
		Frequency = 0Hz (see Fig	gure 1)		0.25	0.4	Ω

LMV431I Electrical Characteristics

 $T_A = 25^{\circ}C$ unless otherwise specified

Symbol	Parameter	Condition	ns	Min	Тур	Max	Units
V _{REF}	Reference Voltage	$V_Z = V_{REF}, I_Z = 10mA$	T _A = 25°C	1.222	1.24	1.258	V
		(See Figure 1)	T _A = Full Range	1.202		1.278	V
V _{DEV}	Deviation of Reference Input Voltage	$V_Z = V_{REF}$, $I_Z = 10mA$,			6	20	mV
	Over Temperature (Note 4)	T _A = Full Range (See Fig					
ΔV _{REF}	Ratio of the Change in Reference	I _Z = 10mA (see Figure 2)				-2.7	mV/V
ΔV_Z	Voltage to the Change in Cathode	V _Z from V _{REF} to 6V					
	Voltage	$R_1 = 10k, R_2 = \infty \text{ and } 2.6k$					
I _{REF}	Reference Input Current	$R_1 = 10k\Omega, R_2 = \infty$			0.15	0.5	μΑ
		I _I = 10mA (see Figure 2)					
∝I _{REF}	Deviation of Reference Input Current	$R_1 = 10k\Omega, R_2 = \infty,$			0.1	0.4	μA
	over Temperature	$I_I = 10$ mA, $T_A = Full Range$	ge <i>(see Figure 2</i>)		0.1	0.4	μΑ
I _{Z(MIN)}	Minimum Cathode Current for	$V_Z = V_{REF}$ (see Figure 1)			55	80	μA
	Regulation				33	80	μΑ
I _{Z(OFF)}	Off-State Current	$V_Z = 6V$, $V_{REF} = 0V$ (see Figure 3)			0.001	0.1	μA
r _Z	Dynamic Output Impedance (Note 5)	$V_Z = V_{REF}$, $I_Z = 0.1 mA$ to	15mA				
		Frequency = 0Hz (see Fig	gure 1)		0.25	0.4	Ω

LMV431AC Electrical Characteristics

 $T_A = 25^{\circ}C$ unless otherwise specified

Symbol	Parameter	Conditio	ns	Min	Тур	Max	Units
V _{REF}	Reference Voltage	$V_Z = V_{REF}$, $I_Z = 10 \text{ mA}$	T _A = 25°C	1.228	1.24	1.252	V
		(See Figure 1)	T _A = Full Range	1.221		1.259]
V _{DEV}	Deviation of Reference Input Voltage	$V_Z = V_{REF}, I_Z = 10mA,$		•	4	12	mV
	Over Temperature (Note 4)	T _A = Full Range (See Fig	T _A = Full Range <i>(See Figure 1</i>)				
ΔV_{REF}	Ratio of the Change in Reference	I _Z = 10 mA (see Figure 2	-1.5	-2.7	mV/V		
$\frac{\Delta V_Z}{\Delta V_Z}$	Voltage to the Change in Cathode	V _Z from V _{REF} to 6V					
	Voltage	$R_1 = 10k, R_2 = \infty \text{ and } 2.6k$					
I _{REF}	Reference Input Current	$R_1 = 1 \text{ k}\Omega, R_2 = \infty$			0.15	0.50	μΑ
		I _I = 10 mA (see Figure 2)					
∝I _{REF}	Deviation of Reference Input Current	$R_1 = 10 \text{ k}\Omega, R_2 = \infty,$			0.05	0.3	μΑ
	over Temperature	$I_1 = 10 \text{ mA}, T_A = \text{Full Ran}$	ge (see Figure 2)		0.05		
I _{Z(MIN)}	Minimum Cathode Current for	$V_Z = V_{REF}$ (see Figure 1)			55	80	
	Regulation				55	80	μA
I _{Z(OFF)}	Off-State Current	V _Z = 6V, V _{REF} = 0V (see Figure 3)			0.001	0.1	μΑ
r _Z	Dynamic Output Impedance (Note 5)	$V_Z = V_{REF}$, $I_Z = 0.1 \text{mA to}$	15mA				
		Frequency = 0 Hz (see Fi	igure 1)		0.25	0.4	Ω

LMV431AI Electrical Characteristics

 $T_A = 25^{\circ}C$ unless otherwise specified

Symbol	Parameter	Condition	ns	Min	Тур	Max	Units
V _{REF}	Reference Voltage	$V_Z = V_{REF}, I_Z = 10mA$	$T_A = 25^{\circ}C$	1.228	1.24	1.252	
		(See Figure 1)	T _A = Full Range	1.215		1.265	V
V _{DEV}	Deviation of Reference Input Voltage	$V_Z = V_{REF}$, $I_Z = 10mA$,			6	20	mV
	Over Temperature (Note 4)	T _A = Full Range (See Fig.	ure 1)				
ΔV_{REF}	Ratio of the Change in Reference	I _Z = 10mA (see Figure 2)				-2.7	mV/V
ΔV_Z	Voltage to the Change in Cathode	V _Z from V _{REF} to 6V					
	Voltage	$R_1 = 10k, R_2 = \infty \text{ and } 2.6$	šk				
I _{REF}	Reference Input Current	$R_1 = 10k\Omega, R_2 = \infty$			0.15	0.5	μΑ
		I _I = 10mA (see Figure 2)					
∝I _{REF}	Deviation of Reference Input Current	$R_1 = 10k\Omega, R_2 = \infty,$			0.1	0.4	
	over Temperature	$I_I = 10$ mA, $T_A = Full Range$	ge <i>(see Figure 2</i>)		0.1	0.4	μΑ
I _{Z(MIN)}	Minimum Cathode Current for	$V_Z = V_{REF}$ (see Figure 1)			55	80	
	Regulation				33	80	μA
I _{Z(OFF)}	Off-State Current	$V_Z = 6V$, $V_{REF} = 0V$ (see Figure 3)			0.001	0.1	μA
r _Z	Dynamic Output Impedance (Note 5)	$V_Z = V_{REF}$, $I_Z = 0.1 \text{mA to}$	15mA				
		Frequency = 0Hz (see Fig	gure 1)		0.25	0.4	Ω

LMV431BC Electrical Characteristics

 $T_A = 25^{\circ}C$ unless otherwise specified

Symbol	Parameter	Condition	ns	Min	Тур	Max	Units
V _{REF}	Reference Voltage	$V_Z = V_{REF}, I_Z = 10mA$	$T_A = 25^{\circ}C$	1.234	1.24	1.246	
		(See Figure 1)	T _A = Full Range	1.227		1.253	V
V _{DEV}	Deviation of Reference Input Voltage	$V_Z = V_{REF}$, $I_Z = 10mA$,			4	12	mV
	Over Temperature (Note 4)	T _A = Full Range (See Fig	ure 1)				
ΔV_{REF}	Ratio of the Change in Reference	I _Z = 10mA (see Figure 2)	2 ,				mV/V
$\frac{\Delta V_Z}{\Delta V_Z}$	Voltage to the Change in Cathode	V _Z from V _{REF} to 6V					
	Voltage	$R_1 = 10k, R_2 = \infty \text{ and } 2.6k$					
I _{REF}	Reference Input Current	$R_1 = 10k\Omega, R_2 = \infty$			0.15	0.50	μΑ
		I _I = 10mA (see Figure 2)					
∝I _{REF}	Deviation of Reference Input Current	$R_1 = 10k\Omega, R_2 = \infty,$				0.0	
	over Temperature	I _I = 10mA, T _A = Full Range <i>(see Figure 2)</i>				0.3	μA
I _{Z(MIN)}	Minimum Cathode Current for	V _Z = V _{REF} (see Figure 1)			55	80	
	Regulation	_ , ,				00	μA
I _{Z(OFF)}	Off-State Current	V _Z = 6V, V _{REF} = 0V (see Figure 3)			0.001	0.1	μA
r _Z	Dynamic Output Impedance (Note 5)	$V_Z = V_{REF}$, $I_Z = 0.1 \text{mA to}$	15mA				
		Frequency = 0Hz (see Fig	gure 1)		0.25	0.4	Ω

LMV431BI Electrical Characteristics

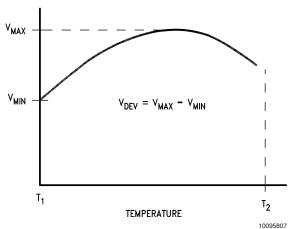
T_A = 25°C unless otherwise specified

Symbol	Parameter	Conditions Min			Тур	Max	Units
V _{REF}	Reference Voltage	$V_Z = V_{REF}, I_Z = 10mA$	T _A = 25°C	1.234	1.24	1.246	
		(See Figure 1)	T _A = Full Range	1.224		1.259	V
V _{DEV}	Deviation of Reference Input Voltage	$V_Z = V_{REF}, I_Z = 10 \text{mA}$ $T_A = 25^{\circ}\text{C}$ 1.234		6	20	mV	
	Over Temperature (Note 4)	T _A = Full Range (See Fig.					
ΔV _{REF}	Ratio of the Change in Reference	I _z = 10mA (see Figure 2)			-1.5	-2.7	mV/V
ΔV_7	Voltage to the Change in Cathode	V _Z from V _{REF} to 6V					
	Voltage	$R_1 = 10k, R_2 = \infty \text{ and } 2.6$	šk				
I _{REF}	Reference Input Current	$R_1 = 10k\Omega, R_2 = \infty$			0.15	0.50	μΑ
		I _I = 10mA (see Figure 2)					

LMV431BI Electrical Characteristics (Continued)

 $T_A = 25^{\circ}C$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
∝I _{REF}	Deviation of Reference Input Current over Temperature	$R_1 = 10k\Omega$, $R_2 = \infty$, $I_1 = 10mA$, $T_A = Full Range (see Figure 2)$		0.1	0.4	μΑ
I _{Z(MIN)}	Minimum Cathode Current for Regulation	V _Z = V _{REF} (see Figure 1)		55	80	μА
I _{Z(OFF)}	Off-State Current	V _Z = 6V, V _{REF} = 0V (see Figure 3)		0.001	0.1	μΑ
r _Z	Dynamic Output Impedance (Note 5)	$V_Z = V_{REF}$, $I_Z = 0.1 \text{mA}$ to 15 mA Frequency = 0 Hz (see Figure 1)		0.25	0.4	Ω


Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.

Note 2: Ratings apply to ambient temperature at 25°C. Above this temperature, derate the TO92 at 6.2 mW/°C, and the SOT23-5 at 2.2 mW/°C. See derating curve in Operating Condition section..

Note 3: $T_{J~Max} = 150$ °C, $T_{J} = T_{A} + (\theta_{JA} P_{D})$, where P_{D} is the operating power of the device.

Note 4: Deviation of reference input voltage, V_{DEV}, is defined as the maximum variation of the reference input voltage over the full temperature range. See following:

LMV431BI Electrical Characteristics (Continued)

The average temperature coefficient of the reference input voltage, ∝V_{REF}, is defined as:

$${}_{\infty} V_{REF} \frac{ppm}{{}^{\circ}C} = \frac{\pm \left[\frac{V_{Max} - V_{Min}}{V_{REF} (at \ 25 {}^{\circ}C)} \right] 10^6}{T_2 - T_1} = \frac{\pm \left[\frac{V_{DEV}}{V_{REF} (at \ 25 {}^{\circ}C)} \right] 10^6}{T_2 - T_1}$$

Where:

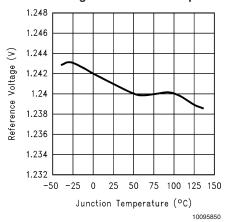
 $T_2 - T_1$ = full temperature change.

 ${\scriptstyle \sim} V_{REF}$ can be positive or negative depending on whether the slope is positive or negative.

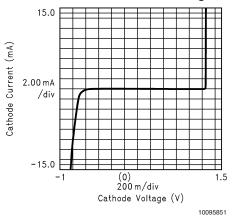
Example: $V_{DEV} = 6.0 \text{mV}$, REF = 1240 mV, $T_2 - T_1 = 125 ^{\circ}\text{C}$.

$$\propto V_{REF} = \frac{\left[\frac{6.0 \text{ mV}}{1240 \text{ mV}}\right] 10^6}{125^{\circ}\text{C}} = +39 \text{ ppm/}^{\circ}\text{C}$$

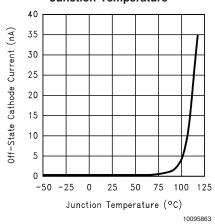
Note 5: The dynamic output impedance, r_Z , is defined as:

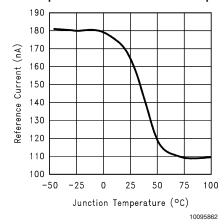

$$r_Z = \frac{\Delta V_Z}{\Delta I_Z}$$

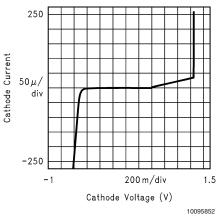
When the device is programmed with two external resistors, R1 and R2, (see Figure 2), the dynamic output impedance of the overall circuit, rz, is defined as:

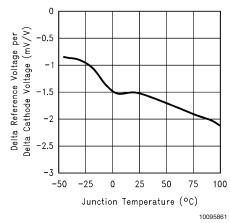

$$r_Z = \frac{\Delta V_Z}{\Delta I_Z} \cong \left[r_Z \left(1 + \frac{R1}{R2} \right) \right]$$

Typical Performance Characteristics

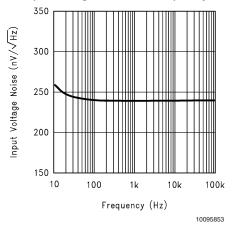

Reference Voltage vs. Junction Temperature


Cathode Current vs. Cathode Voltage 1


Off-State Cathode Current vs. Junction Temperature

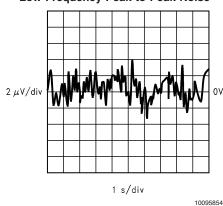

Reference Input Current vs. Junction Temperature

Cathode Current vs. Cathode Voltage 2



Delta Reference Voltage Per Delta Cathode Voltage vs. Junction Temperature

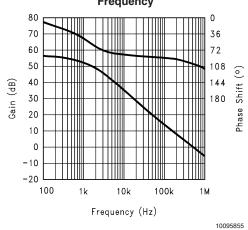
Typical Performance Characteristics (Continued)

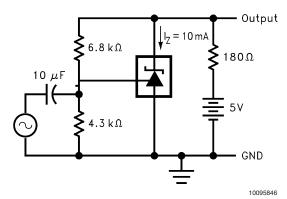

Input Voltage Noise vs. Frequency



$470 \mu F$ LMV431A $2200 \mu F$ 160 kΩ 10095845

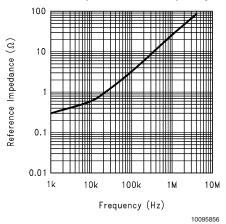
Test Circuit for Input Voltage Noise vs. Frequency


Low Frequency Peak to Peak Noise



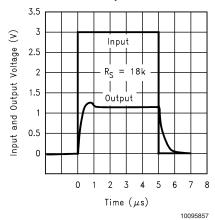
Test Circuit for Peak to Peak Noise (BW= 0.1Hz to 10Hz)

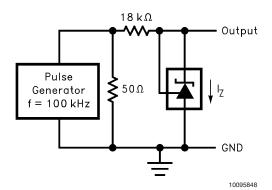
Small Signal Voltage Gain and Phase Shift vs. Frequency



Test Circuit For Voltage Gain and Phase Shift vs. Frequency

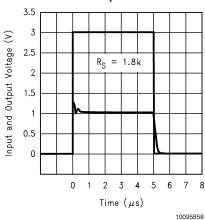
Typical Performance Characteristics (Continued)

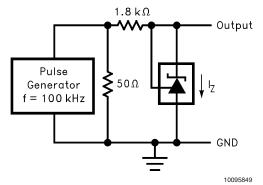

Reference Impedance vs. Frequency



100 Ω
100 Ω
100 Ω
100 Ω
100 Ω
100 Ω

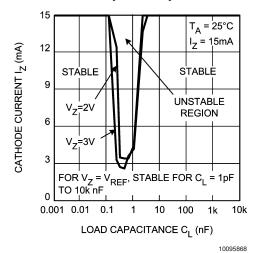
Test Circuit for Reference Impedance vs. Frequency


Pulse Response 1



Test Circuit for Pulse Response 1

Pulse Response 2



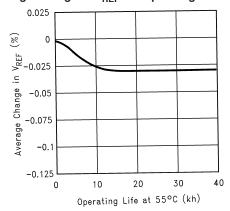
Test Circuit for Pulse Response 2

Typical Performance Characteristics (Continued)

LMV431 Stability Boundary Condition

C_L 150Ω

V_Z 150Ω

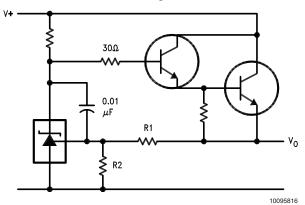

V_{SUPPLY}

10095869

V_Z 150Ω R₁ 10kΩ V_{SUPPLY}

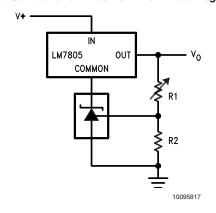
Test circuit for $V_z = V_{REF}$ Test Circuit for $V_z = 2V$, 3V

Percentage Change in V_{REF} vs. Operating Life at 55°C



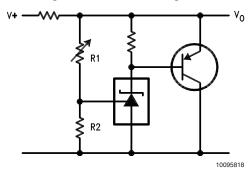
10095866

Extrapolated from life-test data taken at 125°C; the activation energy assumed is 0.7eV.

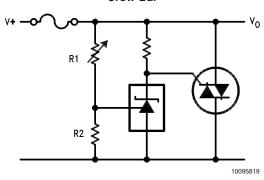

Typical Applications

Series Regulator

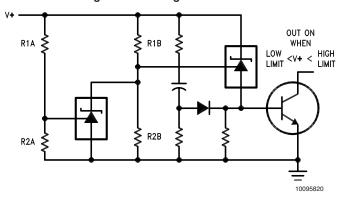
$$V_{O} \approx \left(1 + \frac{R1}{R2}\right) V_{REF}$$


Output Control of a Three Terminal Fixed Regulator

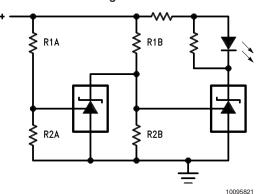
$$V_{O} = \left(1 + \frac{R1}{R2}\right) V_{REF}$$


$$V_{O MIN} = V_{REF} + 5V$$

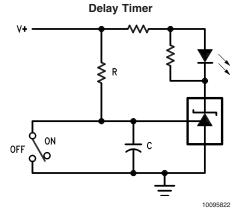
Higher Current Shunt Regulator


$$V_{O} \approx \left(1 + \frac{R1}{R2}\right) V_{REF}$$

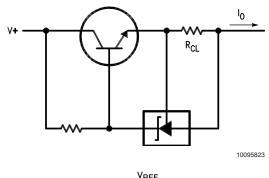
Crow Bar


$$V_{LIMIT} \approx \bigg(\ 1 \, + \frac{R1}{R2}\bigg) V_{REF}$$

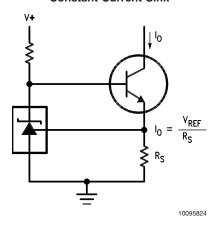
Over Voltage/Under VoltageProtection Circuit


$$\begin{split} & \text{LOW LIMIT} \approx \text{V}_{\text{REF}} \left(1 + \frac{\text{R1B}}{\text{R2B}}\right) + \text{V}_{\text{BE}} \\ & \text{HIGH LIMIT} \approx \text{V}_{\text{REF}} \left(1 + \frac{\text{R1A}}{\text{R2A}}\right) \end{split}$$

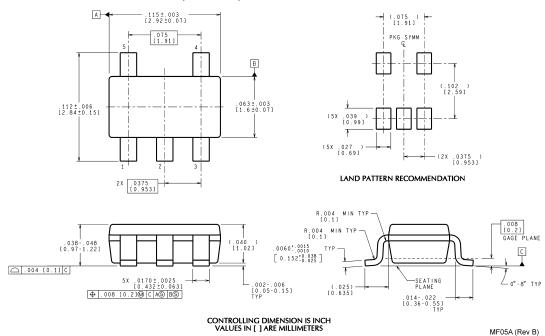
Voltage Monitor


$$\begin{split} & \text{LOW LIMIT} \approx V_{\text{REF}} \left(1 + \frac{\text{R1B}}{\text{R2B}}\right) & \text{LED ON WHEN} \\ & \text{LOW LIMIT} < V^+ < \text{HIGH LIMIT} \\ & \text{HIGH LIMIT} \approx V_{\text{REF}} \left(1 + \frac{\text{R1A}}{\text{R2A}}\right) \end{split}$$

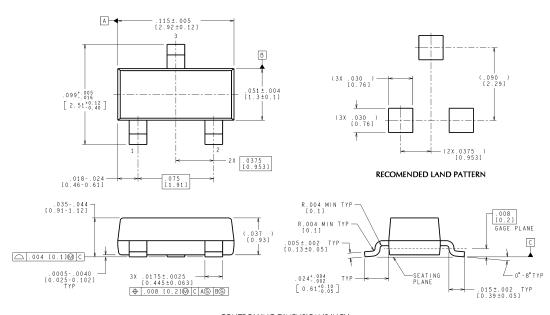
Typical Applications (Continued)


$$\mathsf{DELAY} = \mathsf{R} \bullet \mathsf{C} \bullet \, \ln \frac{\mathsf{V} +}{(\mathsf{V}^+) - \mathsf{V}_{\mathsf{REF}}}$$

Current Limiter or Current Source

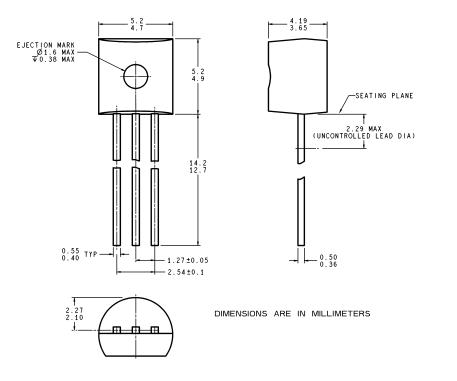


$$I_0 = \frac{V_{REF}}{R_{CL}}$$


Constant Current Sink

Physical Dimensions inches (millimeters) unless otherwise noted

SOT23-5 Molded Small Outline Transistor Package (M5) NS Package Number MF05A



CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

MF03A (Rev B)

SOT23-3 Molded Small Outline Transistor Package (M3) NS Package Number MF03A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

TO-92 Plastic Package NS Package Number Z03A

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ZO3A (Rev G)

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560